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Abstract We compute the corrections to the orbital Lense-Thirring effect (or frame-
dragging) in the presence of spacetime torsion. We analyze the motion of a test body in
the gravitational field of a rotating axisymmetric massive body, using the parametrized
framework of Mao, Tegmark, Guth and Cabi. In the cases of autoparallel and extremal
trajectories, we derive the specific approximate expression of the corresponding sys-
tem of ordinary differential equations, which are then solved with methods of Celestial
Mechanics. We calculate the secular variations of the longitudes of the node and of the
pericenter. We also show how the LAser GEOdynamics Satellites (LAGEOS) can be
used to constrain torsion parameters. We report the experimental constraints obtained
using both the nodes and perigee measurements of the orbital Lense-Thirring effect.
This makes LAGEOS and Gravity Probe B complementary frame-dragging and torsion
experiments, since they constrain three different combinations of torsion parameters.
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1 Introduction

In recent years a lot of effort has been devoted to measure gravitomagnetic effects due
to Earth’s rotation [1–3] predicted by the theory of General Relativity (GR). In par-
ticular, the Lense-Thirring effect on the orbital motion of a test body can be measured
by using the satellite laser ranging (SLR) technique, whose data are provided by the
ILRS1. By analyzing the laser ranging data of the orbits of the satellites LAGEOS and
LAGEOS II, a measurement of the Lense-Thirring effect was obtained by Ciufolini
and Pavlis [4].

SLR missions can also be useful to test modifications of GR, such as torsion theories
of gravity. A class of theories allowing the presence of torsion is based on Riemann-
Cartan spacetime, which is endowed with a metric gμν and a compatible connection.
The resulting connection �λ

μν turns out to be nonsymmetric, and therefore it originates
a non-vanishing torsion tensor. We refer to [5,6] for the details.

In standard torsion theories the source of torsion is considered to be the intrinsic spin
of matter [5–8], which is negligible when averaged over a macroscopic body. Therefore
spacetime torsion would be observationally negligible in the solar system. Neverthe-
less, in [9] Mao, Tegmark, Guth and Cabi (MTGC) argue that the presence of detect-
able torsion in the solar system should be tested experimentally, rather than derived
by means of a specific torsion model. For this reason, in [9] a theory-independent
framework based on symmetry arguments is developed, and it is determined by a set
t1, t2, w1, . . . , w5 of seven parameters describing torsion and three further parameters
F ,G,H describing the metric. Here, by theory-independent framework, we mean the
following: the metric and the connection are parametrized, around a massive body,
with the help of symmetry arguments, without reference to a torsion model based on
a specific Lagrangian (or even on specific field equations).

This parametrized framework can be used to constrain t1, t2, w1, . . . , w5 from solar
system experiments. In particular, MTGC suggest that GPB [10] is an appropriate
experiment for this task, and in [9] they compute precessions of gyroscopes and put
constraints on torsion parameters from GPB measurements. In [11] Hehl and Obukhov
argue that measuring torsion requires intrinsic spin, and criticize the approach of
MTGC, since GPB gyroscopes do not carry uncompensated elementary particle spin.
Nevertheless, we accept the general idea that the precise form of the coupling of tor-
sion to matter should be tested experimentally, and that actual experimental knowledge
leaves room for nonstandard torsion theories which could yield detectable torsion sig-
nals in the solar system. In the present paper we apply the parametrized framework
developed by MTGC for the computation of satellites orbits around Earth and we put
a different set of constraints on torsion parameters from SLR measurements.

MTGC also address the question of whether there exists a specific gravitational
Lagrangian fitting in the parametrized framework and yielding a torsion signal

1 International Laser Ranging Service; see http://www.ilrs.gsfc.nasa.gov/.
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detectable by the GPB experiment. As an example they quote the theory of Hay-
ashi and Shirafuji (HS) in [12] where a massive body generates a torsion field, and
they propose what they call the Einstein-Hayashi-Shirafuji (EHS) Lagrangian, inter-
polating GR and HS Lagrangians in a linear way. However, MTGC consider only a
gravitational Lagrangian in vacuum, so that they cannot derive the equations of motion
of test bodies from the gravitational field equations, which would require a suitable
matter coupling.

The EHS model has been criticized by various authors. In the paper [13], Flanagan
and Rosenthal show that the linearized EHS theory becomes consistent only if the
coefficients in the Lagrangian are constrained in such a way that the resulting predic-
tions coincide with those of GR. In the paper [14], Puetzfeld and Obukhov derive the
equations of motion in the framework of metric-affine gravity theories, which includes
the HS theory, and show that only test bodies with microstructure (such as spin) can
couple to torsion. In conclusion, the EHS theory does not yield a torsion signal detect-
able for GPB. For these reasons, in [9] the EHS Lagrangian is proposed not as a viable
physical model, but as a pedagogical toy model fitting in the parametrized framework,
and giving an illustration of the constraints that can be imposed on torsion by the GPB
experiment. In the present paper we will not consider such a toy model.

As also remarked by Flanagan and Rosenthal in [13], the failure of constructing the
specific EHS Lagrangian does not rule out the possibility that there may exist other tor-
sion theories which could be usefully constrained by solar system experiments. Such
torsion models should fit in the above mentioned theory-independent framework, sim-
ilarly to a parametrized post-Newtonian framework including torsion. We remark that
the parametrized formalism of MTGC does not take into account the intrinsic spin of
matter as a possible source of torsion, and in this sense it cannot be a general torsion
framework. However, it is adequate for the description of torsion around macroscopic
massive bodies in the solar system, like planets, being the intrinsic spin negligible
when averaged over such bodies.

Therefore we think it is worthwhile to continue the investigation of observable
effects in the solar system of nonstandard torsion models within the MTGC param-
etrized formalism, under suitable working assumptions. In particular, our aim is to
extend the GPB gyroscopes computations made in [9] to the case of motion of satel-
lites.

In the present paper we compute the corrections to the orbital Lense-Thirring effect
due to the presence of spacetime torsion described by t1, t2, w1, . . . , w5. We consider
the motion of a test body in the gravitational field of a rotating axisymmetric massive
body, under the assumption of slow motion of the test body. Since we use a param-
etrized framework without specifying the coupling of torsion to matter, we cannot
derive the equations of motion of test bodies from the gravitational field equations.
Therefore, in order to compute effects of torsion on the orbits of satellites, we will
work out the implications of the assumption that the trajectory of a test body is either
an extremal or an autoparallel curve. Such trajectories do not need to coincide when
torsion is present.

As in the original paper of Lense and Thirring [15], we characterize the motion
using the six orbital elements of the osculating ellipse. In terms of these orbital ele-
ments, the equations of motion then reduce to the Lagrangian planetary equations.
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We calculate the secular variations of the longitude � of the node and of the longitude
ω̃ of the pericenter. The computed secular variations show how the corrections to the
orbital Lense-Thirring effect depend on the torsion parameters, and it turns out that
the dependence is only through w1, . . . , w5. The data from the LAGEOS satellites are
then used to constrain the relevant linear combinations of the torsion parameters. More
precisely, we constrain two different linear combinations of w1, . . . , w5 by using first
the measurements of the nodes of LAGEOS and LAGEOS II, and then the measure-
ments of the nodes of LAGEOS and LAGEOS II and of the perigee of LAGEOS II.
In particular, torsion parameters cannot be constrained by satellite experiments in the
case of extremal trajectories.

While the torsion perturbations to the Lense-Thirring effect depend only on
w1, . . . , w5, it turns out that another relevant relativistic effect, namely the geodetic
precession (or de Sitter effect), depends on the parameters t1 and t2, and on a further
parameter t3. This latter parameter is involved in a higher order parametrization of
torsion, which is necessary for the description of the geodetic precession effect, while
it is not necessary at the order of accuracy required in the present paper. All compu-
tations of orbital geodetic precession with torsion of a satellite are performed in the
companion paper [16], to which we will sometimes refer for details.

The paper is organized as follows. In Sect. 2 we briefly recall the notion of spacetime
with torsion. In Sect. 3 we discuss the case of extremal trajectories. In Sect. 4 we ana-
lyze the equations of autoparallel trajectories and derive the related system of ordinary
differential equations to first order. The expression of the system clearly reveals the
perturbation due to torsion with respect to the Lense-Thirring equations. In Sect. 5 we
derive the time evolution of the orbital elements, by applying the classical perturbation
theory of Celestial Mechanics, in particular the Gauss form of the Lagrange planetary
equations. In Sect. 6 we calculate the secular variations of the orbital elements. In
Sect. 7 we recall some results from [16] where torsion solar perturbations are com-
puted. These results will be used in Sect. 8, where we give the observational constraints
that the LAGEOS experiment can place on torsion parameters. Conclusions are drawn
in Sect. 9. For convenience of the reader, in the appendix (Sect. 10) we recall from [9]
how to parametrize the metric and torsion tensors, and hence how to parametrize the
connection, under suitable symmetry assumptions.

2 Spacetime with torsion

A manifold equipped with a Lorentzian metric gμν and a connection �λ
μν compatible

with the metric is called a Riemann-Cartan spacetime [5,6]. Compatibility means that
∇μgνλ = 0, where ∇ denotes the covariant derivative. We recall in particular that for
any vector field vλ

∇μvλ ≡ ∂μvλ + �λ
μνv

ν.

The connection is determined uniquely by gμν and by the torsion tensor

S λ
μν ≡ 1

2

(

�λ
μν − �λ

νμ

)
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as follows:

�λ
μν =

{

λ

μν

}

− K λ
μν , (2.1)

where {·} is the Levi-Civita connection, defined by

{

λ

μν

}

= 1

2
gλρ

(

∂μgνρ + ∂νgμρ − ∂ρgμν

)

, (2.2)

and

K λ
μν ≡ −S λ

μν − Sλ
νμ − Sλ

μν (2.3)

is the contortion tensor. In the particular case when �λ
μν is symmetric with respect

to μ, ν the torsion tensor vanishes. We will be concerned here with the case of non-
symmetric connections �λ

μν . The case of vanishing torsion tensor corresponds to
Riemann spacetime of GR, while the case of vanishing Riemann tensor corresponds
to the Weitzenböck spacetime [12].

In the present paper we use the natural gravitational units c = 1 and G = 1. We
will assume that Earth can be approximated as a uniformly rotating spherical object
of mass m and angular momentum J . Following [9], we use spherical coordinates
(r, θ, φ) for a satellite moving in the gravitational field of Earth, and we introduce
the dimensionless parameters εm ≡ m/r and εJ ≡ J/(mr). Since the radii of the
LAGEOS orbits (about 6,000 km altitude) are much larger than Earth’s Schwarzschild
radius, it follows that εm << 1. Moreover, since Earth is slowly rotating, we have
εJ << 1. Therefore, all computations will be carried out perturbatively to first order
in εm and εJ .

Under spherical axisymmetry assumptions, the metric tensor gμν and the torsion
tensor S ρ

μν have been parametrized to first order in [9]. Accordingly, gμν is param-
etrized by three parameters H,F ,G, and S ρ

μν is parametrized by seven parameters
t1, t2, w1, . . . , w5,

S λ
μν = S λ

μν (t1, t2, w1, . . . , w5, r, θ, φ) .

Therefore �λ
μν becomes an explicit function of all metric and torsion parameters. It

turns out that t1, t2 contribute to geodetic precession, while w1, . . . , w5 contribute to
the frame-dragging precession. In the Appendix we report the explicit expressions of
the parametrized metric and torsion tensors, and of the connection, that will be needed
in the sequel of the paper.

3 Equations of extremal trajectories

In GR structureless test bodies move along geodesics. In a Riemann-Cartan spacetime
there are two different classes of curves, autoparallel and extremal curves, respec-
tively, which reduce to the geodesics of Riemann spacetime when torsion is zero [5].

123



3104 R. March et al.

Autoparallels are curves along which the velocity vector is transported parallel to itself
by the connection �λ

μν . Extremals are curves of extremal length with respect to the
metric gμν . The velocity vector is transported parallel to itself along extremal curves
by the Levi-Civita connection. In GR the two types of trajectories coincide while, in
general, they may differ in presence of torsion. They are identical when the torsion is
totally antisymmetric [5], a condition which is not satisfied within our parametrization.

The equations of motion of bodies in the gravitational field follow from the field
equations due to the Bianchi identities. The method of Papapetrou [17] can be used
to derive the equations of motion of a test body with internal structure, such as for
instance a small extended object that may have either rotational angular momentum or
net spin. In standard torsion theories the trajectories of test bodies with internal struc-
ture, in general, are neither autoparallels nor extremals [5,6,18], while structureless
test bodies, such as spinless test particles, follow extremal trajectories.

The precise form of the equations of motion of bodies in the gravitational field
depends on the way the matter couples to the metric and the torsion in the Lagrangian
(or in the gravitational field equations). As explained in the Introduction, we do not
specify a coupling of torsion to matter, hence we do not specify the field equations.
Moreover, in our computations of orbits of a satellite (considered as a test body), we
will neglect its internal structure. In a theory-independent framework we cannot derive
the equations of motion from the gravitational field equations, hence we need some
working assumptions on the trajectories of structureless test bodies: we will investi-
gate the consequences of the assumption that the trajectories are either extremal or
autoparallel curves. Assuming the trajectory to be an extremal is natural and consistent
with standard torsion theories. However, extremals depend only on the parameters of
the metric, so that new predictions related to torsion cannot arise. We will quickly
report the computations for the sake of completeness, since the metric parameters can
be immediately related to the Parametrized Post Newtonian (PPN) parameters (see
(10.2)), and the orbital Lense-Thirring effect in the case of extremal trajectories and a
PPN metric is known.

The system of equations of extremal trajectories reads as

d2xλ

dτ 2 +
{

λ

μν

}

dxμ

dτ

dxν

dτ
= 0, (3.1)

where τ is the proper time. For slow motion of the satellite we can make the substitution
dτ � dt , so that

d2xα

dt2 +
{

α

μν

}

dxμ

dt

dxν

dt
= 0,

for α ∈ {1, 2, 3}. We assume that the velocity of the satellite is small enough so that
we can neglect the quadratic terms in the velocity. Then, being x0 = t we have

d2xα

dt2 +
{

α

00

}

+ 2

{

α

0β

}

dxβ

dt
= 0, (3.2)

for β ∈ {1, 2, 3}.
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All perturbations considered here are so small that can be superposed linearly. Since
we are only interested in the perturbations due to Earth’s rotation, as in the original
Lense-Thirring paper [15] we are allowed to neglect the quadratic terms in the veloc-
ities which yield an advance of the perigee of the satellite. The value of the advance
of the perigee for an extremal orbit and a PPN metric can be found in [2, Chapter 7,
formula (7.54)].

We use for xα spherical coordinates (r, θ, φ). The Levi-Civita connection {·} can
be obtained from the expression of �λ

μν given in the Appendix by setting to zero all
torsion parameters t1, t2, w1, . . . , w5. Substituting the resulting expression in (3.2)
one gets

⎧

⎪

⎨

⎪

⎩

r̈r − (H/2)εm + Gφ̇r sin2 θεmεJ = 0,

θ̈r − 2Gφ̇ sin θ cos θεmεJ = 0,

φ̈r2 sin θ − Gṙ sin θεmεJ + 2Gθ̇r cos θεmεJ = 0.

(3.3)

The equations of motions (3.3) depend neither on the metric parameter F nor on
the torsion parameters. System (3.3) to lowest order becomes

d �v
dt

= H
2

m

r2 êr ,

where êr is the unit vector in the radial direction. Imposing the Newtonian limit yields
H = −2 as in a PPN metric (see also [9, formula (23)]).

We now transform (3.3) in rectangular coordinates x = r sin θ cos φ, y =
r sin θ sin φ, z = r cos θ . We compute the second derivatives of x, y, z with respect
to time in the approximation of slow motion. Neglecting all terms containing squares
and products of first derivatives with respect to (r, θ, φ), we get

⎧

⎪

⎨

⎪

⎩

ẍ = r̈ sin θ cos φ + θ̈r cos θ cos φ − φ̈r sin θ sin φ,

ÿ = r̈ sin θ sin φ + θ̈r cos θ sin φ + φ̈r sin θ cos φ,

z̈ = r̈ cos θ − θ̈r sin θ.

(3.4)

Using (3.3) and (3.4) we obtain the following system for the equations of motion:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẍ = −εm

r2 x − G εmεJ

r3

[ (

x2 + y2 − 2z2
)

ẏ + 3yzż
]

,

ÿ = −εm

r2 y + G εmεJ

r3

[ (

x2 + y2 − 2z2
)

ẋ + 3xzż
]

,

z̈ = −εm

r2 z + G εmεJ

r3 3z (yẋ − x ẏ) .

(3.5)

Note that when G = −2 system (3.5) reduces to the equations of motion found
by the Lense-Thirring [15, formula (15)]. Hence the relativistic perturbation of the
Newtonian force is just multiplied by the factor −G/2 with respect to the original
Lense-Thirring equations. It follows that the formulae of precession of the orbital

123



3106 R. March et al.

elements of a satellite can be obtained by multiplying the original Lense-Thirring for-
mulae [15, formula (17)] by the factor −G/2. The details of the computation, based on
the Lagrange planetary equations of Celestial Mechanics, can be also retrieved from
the computations for autoparallel trajectories given in the next sections, by setting to
zero all torsion parameters t1, t2, w1, . . . , w5.

Using the standard astronomical notation, we denote by � the longitude of the node
and by ω the argument of the perigee of the satellite’s orbit. The secular contributions
to the variations of � and ω are:

(δ�)sec = − G J

a3(1 − e2)3/2 t, (δω)sec = 3G J cos i

a3(1 − e2)3/2 t, (3.6)

where a is the semimajor axis of the satellite’s orbit, e is the eccentricity, i is the orbital
inclination, and t is time. When G = −2 the quantities in (3.6) reduce to the classical
corresponding Lense-Thirring ones.

Since the expressions of (δ�)sec and (δω)sec depend only on G, the measurements
of satellites experiments cannot be used to constrain the torsion parameters.

4 Equations of autoparallel trajectories

In standard torsion theories the trajectories of structureless test bodies follow extremal
trajectories [5,6], which depend only on the metric. However, new predictions related
to torsion may arise when considering the autoparallel trajectories. In the following
we give some motivations which make worthwhile the investigation of autoparallel
trajectories.

Since in spacetime with torsion parallelograms are in general not closed, but
exhibit a closure failure proportional to the torsion, Kleinert and Pelster argue in
[19] that the variational procedure in the action principle for the motion of structure-
less test bodies must be modified. In the standard variational procedure for finding
the extrema of the action, paths are varied keeping the endpoints fixed in such a
way that variations form closed paths. However, in the formalism of [19], the clo-
sure failure makes the variation at the final point nonzero, and this gives rise to
a force due to torsion. When this argument is applied to the action principle for
structureless test bodies it turns out that the resulting torsion force changes extre-
mal trajectories to autoparallel ones (see [19] for the details). Kleinert and Shabanov
find an analogous result in [20] where they show that the geometry of spacetime
with torsion can be induced by embedding its curves in a euclidean space with-
out torsion. Kleinert et al. also argue in [19,20] that autoparallel trajectories are
consistent with the principle of inertia, since a structureless test body will change
its direction in a minimal way at each time, so that the trajectory is as straight as
possible.

The approach of Kleinert et al. has been criticized by Hehl and Obukhov in [11]
since the equations of autoparallel trajectories have not been derived from the energy-
momentum conservation laws. Kleinert investigates this issue in [21] and finds that,
due to the closure failure, the energy-momentum tensor of spinless point particles
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satisfies a different conservation law with respect to the one satisfied in torsion theo-
ries such as [5,6]. The resulting conservation law yields autoparallel trajectories for
spinless test particles. Kleinert then addresses the question of whether this new con-
servation law allows for the construction of an extension of Einstein field equations
to spacetime with torsion. The author gives an answer for the case of torsion derived
from a scalar potential (see [6] for a discussion of this kind of torsion). In this case
the autoparallel trajectories are derived from the gravitational field equations via the
Bianchi identities, though the field equation for the scalar field, which is the potential
of torsion, is unknown.

In [22] Dereli and Tucker show that the theory of Brans-Dicke can be reformu-
lated as a field theory on a spacetime with dynamic torsion determined by the gra-
dient of the Brans-Dicke scalar field. Then in [23] they suggest that the autoparal-
lel trajectory of a spinless test particle in such a torsion geometry is a possibility
that has to be taken into account. In [23] the autoparallel trajectories of massive
spinless test particles are analyzed in the background of a spherically symmetric,
static solution to the Brans-Dicke theory and the results are applied to the compu-
tations of the orbit of Mercury. In [24] the autoparallel trajectories of spinless parti-
cles are analyzed in the background of a Kerr Brans-Dicke geometry. In [25,26] the
equations of autoparallel trajectories are derived from the gravitational field equa-
tions and Bianchi identities, in the special case of matter modeled as a pressureless
fluid, and torsion expressed solely in terms of the gradient of the Brans-Dicke scalar
field.

The above quoted results show that there is an interest in the autoparallels in space-
time with torsion, which make worthwhile their investigation in the present paper. The
system of equations of autoparallels reads as

d2xλ

dτ 2 + �λ
μν

dxμ

dτ

dxν

dτ
= 0, (4.1)

where τ is the proper time [27]. Observe that only the symmetric part 1
2 (�λ

μν +�λ
νμ)

of the connection enters in (4.1); moreover, starting from (4.1) the totally antisym-
metric part of Sλμν cannot be measured.

The trajectory of a test body has to be a time-like curve. Since the connection is
compatible with the metric, the quantity gμν

dxμ

dτ
dxν

dτ
is conserved by parallel transport.

The tangent vector dxμ

dτ
to the trajectory undergoes parallel transport by the connection

along the autoparallel. Therefore, an autoparallel that is time-like at one point has this
same orientation everywhere, so that the trajectory is strictly contained in the light
cone determined by gμν , in a neighbourhood of every of its points. Hence the compat-
ibility of the connection with the metric ensures that autoparallels fulfil a necessary
requirement for causality.

For slow motion of the satellite we can make the substitution dτ � dt , so that

d2xα

dt2 + �α
μν

dxμ

dt

dxν

dt
= 0,
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for α ∈ {1, 2, 3}. Again, we assume that the velocity of the satellite is small enough so
that we can neglect the terms which are quadratic in the velocity. Then, being x0 = t
we have

d2xα

dt2 + �α
00 + (�α

β0 + �α
0β)

dxβ

dt
= 0, (4.2)

for β ∈ {1, 2, 3}.
As in the previous section, all the perturbations that we are considering here are so

small that can be superposed linearly. We are allowed to neglect the quadratic terms in
the velocities which yield an advance of the perigee of the satellite. Such an advance
of the perigee for an autoparallel orbit in presence of torsion has been computed in
[16].

We use for xα spherical coordinates (r, θ, φ). Substituting in (4.2) the expression
of �λ

μν given in the Appendix one gets

⎧

⎪

⎨

⎪

⎩

r̈r + Cεm + Dφ̇r sin2 θεmεJ = 0,

θ̈r − Bφ̇ sin θ cos θεmεJ = 0,

φ̈r2 sin θ + Aṙ sin θεmεJ + Bθ̇r cos θεmεJ = 0,

(4.3)

where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A = −G + w1 − w3,

B = 2G + w2 − w4,

C = t1 − H
2

,

D = G − w1 − w5.

(4.4)

Note that equations of motions (4.3) do not depend on the metric parameter F and
on the torsion parameter t2. Moreover, the dependence on w2 and w4 appears only
through their difference.

System (4.3) to lowest order becomes

d �v
dt

= −C m

r2 êr ,

where êr is the unit vector in the radial direction. Imposing the Newtonian limit it
follows that (see also [9, formula (23)])

C = 1. (4.5)

Since the Newtonian limit fixes the value of t1, the equations of autoparallels depend
only on the parameters w1, . . . , w5 (called frame-dragging torsion parameters in [9]).
Therefore the precession of satellite’s orbital elements will depend only on such torsion
parameters, as it has been found in [9] for gyroscopes.
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Using (4.3) and (3.4) we obtain the following system for the equations of motion:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẍ = − εm

r2 x + εmεJ

r3

[

(D + A)xyẋ +
(

−Dx2 + Ay2 + Bz2
)

ẏ + (A − B) yzż
]

,

ÿ = − εm

r2 y + εmεJ

r3

[

− (D + A)xy ẏ +
(

−Ax2 + Dy2 − Bz2
)

ẋ − (A − B) xzż
]

,

z̈ = − εm

r2 z + εmεJ

r3 (D + B)z (yẋ − x ẏ) .

(4.6)

Note that in case of no torsion (i.e. wi = 0 for any i = 1, . . . , 5) and when G = −2
system (4.6) reduces to the equations of motion found by the Lense-Thirring [15,
formula (15)].

5 Computation of orbital elements via perturbation theory

The system (4.6) expressing the motion along autoparallel trajectories can be written
in the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẍ = − m

r3 x + Fx ,

ÿ = − m

r3 y + Fy,

z̈ = − m

r3 z + Fz,

(5.1)

where (Fx , Fy, Fz) is the perturbation with respect to the Newton force,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Fx = ma

r5

[

(D + A)xyẋ +
(

−Dx2 + Ay2 + Bz2
)

ẏ + (A − B) yzż
]

,

Fy = ma

r5

[

− (D + A)xy ẏ +
(

−Ax2 + Dy2 − Bz2
)

ẋ − (A − B) xzż
]

,

Fz = ma

r5
(D + B)z (yẋ − x ẏ) .

(5.2)

We use the standard coordinates transformation [28,29] used in Celestial Mechanics

⎧

⎪

⎨

⎪

⎩

x = r (cos u cos � − sin u sin � cos i) ,

y = r (cos u sin � + sin u cos � cos i) ,

z = r sin u sin i,

where i is the orbital inclination, � is the longitude of the node, and u is the argument
of latitude. The vector (Fx , Fy, Fz) can be decomposed in the standard way along
three mutually orthogonal axes as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

S = x

r
Fx + y

r
Fy + z

r
Fz,

T = ∂(x/r)

∂u
Fx + ∂(y/r)

∂u
Fy + ∂(z/r)

∂u
Fz,

sin u W = ∂(x/r)

∂i
Fx + ∂(y/r)

∂i
Fy + ∂(z/r)

∂i
Fz .

(5.3)
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Here S is the component along the instantaneous radius vector, T is the component
perpendicular to the instantaneous radius vector in the direction of motion, and W is
the component normal to the osculating plane of the orbit (colinear with the angular
momentum vector). Then, substituting (5.2) into (5.3) gives

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

S = − J

r2 D cos i u̇,

T = − J

r3 A cos i ṙ ,

W = J

r3 sin i (A cos u ṙ − B sin ur u̇) .

(5.4)

Note that in case of no torsion and when G = −2 formulae (5.4) reduce to the com-
ponents found by Lense-Thirring (see equations (16) in [15]).

Let us now recall [28,29] that, using the method of variation of constants,

r = a(1 − e2)

1 + e cos v
,

where a is the semimajor axis of the satellite’s orbit, e is the eccentricity, v is the true
anomaly, and

ṙ = r2e sin v

a(1 − e2)
v̇, r2v̇ = na2(1 − e2)1/2,

n = 2π/U, U the period of revolution. Following the standard astronomical notation,
we let ω be the argument of the perigee, and ω̃ = � + ω be the longitude of the
perigee.

We also recall the following planetary equations of Lagrange in the Gauss form
[29, Chapter 6, Sect. 6]:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

da

dt
= 2

n(1 − e2)1/2

[

Se sin v + T
a(1 − e2)

r

]

,

de

dt
= (1 − e2)1/2

na

[

S sin v + T

(

e + r + a

a
cos v

)]

,

di

dt
= 1

na2(1 − e2)1/2 Wr cos u,

d�

dt
= 1

na2(1 − e2)1/2 sin i
Wr sin u,

dω̃

dt
= (1 − e2)1/2

nae

[

−S cos v + T

(

1 + r

a(1 − e2)

)

sin v

]

+ 2 sin2 i

2

d�

dt
,

d L0

dt
= − 2

na2 Sr + e2

1 + (1 − e2)1/2

dω̃

dt
+ 2(1 − e2)1/2 sin2 i

2

d�

dt
,

(5.5)

where L0 = −τn + ω̃ is the longitude at epoch, and τ is the time of periapsis passage.
Using the expressions of S, T and W given by (5.4) and integrating the Lagrange

planetary equations we compute the variations of the orbital elements. According
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to perturbation theory, we regard the orbital elements as approximately constant in
the computation of such integrals. Since u = v + ω̃ − �, we can make use of the
approximation

u̇ � v̇. (5.6)

Inserting (5.4)–(5.6) into (5.5) yields

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

da

dt
= −2Je cos i (1 + e cos v)2 sin v

na2(1 − e2)5/2 (Av̇ + Du̇) ,

de

dt
= − J cos i sin v

na3(1 − e2)3/2

[

e(e + 2 cos v + e cos2 v)Av̇ + (1 + e cos v)2Du̇
]

,

di

dt
= J sin i cos u

na3(1 − e2)3/2

[

e sin v cos uAv̇ − sin u(1 + e cos v)Bu̇
]

,

d�

dt
= J sin u

na3(1 − e2)3/2

[

e sin v cos uAv̇ − sin u(1 + e cos v)Bu̇
]

,

dω̃

dt
= J cos i

na3e(1 − e2)3/2

[

(1 + e cos v)2 cos vDu̇ − e sin2 v(2 + e cos v)Av̇
]

+2 sin2 i
2

d�
dt ,

d L0

dt
= 2J cos i

na3(1 − e2)
(1 + e cos v)Du̇ + e2

1 + (1 − e2)1/2

dω̃

dt
+2(1 − e2)1/2 sin2 i

2
d�
dt .

(5.7)

Recalling (5.6), we now integrate (5.7) with respect to v. Therefore we find for the
variations of the orbital elements:

δa = 2Je cos i cos v

na2(1 − e2)5/2
(A + D)

(

1 + e cos v + 1

3
e2 cos2 v

)

,

δe = J cos i cos v

na3(1 − e2)3/2

[

(A + D)

(

1 + e cos v + 1

3
e2 cos2 v

)

− A(1 − e2)

]

,

δi = J sin i

12na3(1 − e2)3/2

[

4(A + 2B)e cos v cos2 u − 4(B + 2A)e cos v

+2(B + 2A)e sin v sin(2u) + 3B cos(2u)

]

,

δ� = J

6na3(1 − e2)3/2

{

− 3Bv + 3B
2

sin(2u)

+e
[

2(A − B) sin v + (A + 2B) sin(2u) cos v − 2(2A + B) sin v cos2 u
]

}

,

δω̃ = J

na3e(1 − e2)3/2 cos i

{

sin v

[

D + (A + D)e cos v + 1

3
(2D − A)e2

+1

3
(A + D)e2 cos2 v

]

+ (D − A)ev

}

+ 2 sin2 i

2
δ�,
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δL0 = 2J cos i

na3(1 − e2)
D (v + e sin v) + e2

1 + (1 − e2)1/2 δω̃ + 2(1 − e2)1/2 sin2 i

2
δ�.

We note that the contributions of the components S and T to the derivative da
dt

are proportional to Du̇ and Av̇, respectively, with the same proportionality constant.
Using the approximation u̇ � v̇ it turns out that in the classical Lense-Thirring case,
where the torsion parameters vanish and −A = D = G, there is a cancellation of such
contributions in such a way that δa vanishes. Conversely, in presence of torsion, if the
eccentricity of the orbit is nonzero, the contributions of the radial and of the tangen-
tial component of the perturbative force differ, so that δa does not vanish, yielding a
periodic perturbation of the semimajor axis of the satellite’s orbit.

6 Torsion corrections to the Lense-Thirring effect

We observe that only periodic terms appear in δa, δe and δi . Secular terms appear in
δ�, δω̃ and δL0. Since v = nt + periodic terms in v, the secular contributions to the
variations of the corresponding orbital elements are:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(δ�)sec = − J

2a3(1 − e2)3/2 Bt,

(δω̃)sec = J

a3(1 − e2)3/2

[

D − A − (B + 2D − 2A) sin2 i

2

]

t,

(δL0)sec = J

a3(1 − e2)

{

2D + e2

1 + (1 − e2)1/2

1

(1 − e2)1/2

[D − A − (B + 2D − 2A) sin2 i
2

] − (B + 4D) sin2 i

2

}

t.

(6.1)

In the absence of torsion and when G = −2, it turns out that (δω̃)sec = (δL0)sec,
as found by Lense-Thirring.

Using (4.4) we rewrite (6.1). For the nodal rate we obtain

(δ�)sec = − G J

a3(1 − e2)3/2

(

1 + μ1

)

t, (6.2)

and for the longitudinal rate of the perigee

(δω̃)sec = 2G J

a3(1 − e2)3/2

[

1 + μ2 − 3
(

1 + μ3
)

sin2 i

2

]

t. (6.3)

Since ω̃ = � + ω, for the rate of the argument of the perigee we find

(δω)sec = G J

a3(1 − e2)3/2

[

3 + μ1 + 2μ2 − 6 (1 + μ3) sin2 i

2

]

t. (6.4)
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The parameters

μ1 ≡ w2 − w4

2G ,

μ2 ≡ 2w1 − w3 + w5

−2G ,

μ3 ≡ 4w1 − w2 − 2w3 + w4 + 2w5

−6G ,

measure deviations from GR. Indeed, when there is no torsion we have wi = 0 for
i = 1, . . . , 5. When, in addition, G = −2 the metric is the weak field approximation
of a Kerr-like metric, and μ1 = μ2 = μ3 = 0 and we get the classical Lense-Thirring
formulae [15]. We also give the expression for the rate of the longitude at epoch,
namely

(δL0)sec = − 2G J

a3(1 − e2)

{

− e2

1 + (1 − e2)1/2

1

(1 − e2)1/2

(

1 + μ2

)

−
(

1 + μ4

)

+
[

(

1 + μ1

)

+ 3e2

1 + (1 − e2)1/2

1

(1 − e2)1/2

(

1 + μ3

)

+ 2
(

1 + μ4

)

]

sin2 i

2

}

t,

(6.5)

where

μ4 ≡ w1 + w5

−G .

Note that μ1, . . . , μ4 do not depend on t1, t2,F ,H.

7 Torsion corrections to the geodetic precession

The secular perturbations of the orbital elements computed in the previous sections are
not the only torsion induced perturbations that are expected. Indeed, a further contribu-
tion due to solar perturbation is present, namely the geodetic precession in presence of
torsion. The corresponding perturbations of the orbital elements have been computed
in the companion paper [16] and they depend only on the torsion parameters ti .

Since we are interested in putting constraints on the frame-dragging torsion param-
eters w1, . . . , w5, there is a relevant difference between the case of GPB gyroscopes
considered in [9] and the present problem of orbits of satellites. In [9] the average
gyroscope precession rate is expressed as

〈

d �S0

dt

〉

= ��eff × �S0,

where �S0 is the angular momentum of the spinning gyroscope measured by an observer
comoving with its center of mass, and the vector ��eff of the angular precession rate
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is a linear combination of �ωO (the orbital angular velocity vector of the gyroscope)
and �ωE (the rotational angular velocity vector of the Earth around its axis). In ��eff the
coefficient of �ωO is a linear combination of the parameters ti , while the coefficient of
�ωE is a linear combination of the parameters wi . Since the GPB satellite has a polar
orbit the vectors �ωO and �ωE are orthogonal. The contribution to the average preces-
sion due to �ωO is the geodetic precession of the gyroscope, while the contribution
due to �ωE is frame-dragging, both in the presence of torsion. Therefore, in the GPB
experiment [10], when measuring the projections of the average precession rate of a
gyroscope on the two corresponding orthogonal directions, it turns out that the linear
combinations of the ti and of the wi torsion parameters can be constrained separately.

On the other hand, in the case of orbital motion of satellites, in the presence of
torsion the geodetic precession and the Lense-Thirring effect are superimposed as it
happens in GR, in such a way that the precessions of the orbital elements are simul-
taneously influenced by both effects. In [16] it has been found that the contribution
of geodetic precession depends on a linear combination of the torsion parameters ti ,
while the contribution of frame-dragging computed in the previous sections depends
on a linear combination of the parameters wi . It turns out that the precession of orbital
elements (such as the node and the perigee) both depend on ti and wi , in such a way
that without a knowledge of the dependence of such precessions on ti , it is not possi-
ble to put constraints on the wi . The knowledge of the dependence on ti corresponds
exactly to the knowledge of the geodetic precession of the orbital elements in presence
of torsion.

In GR it is known that the geodetic precession is independent of the orbital elements
of the satellites (and therefore it is the same both for LAGEOS and the Moon). This
property is used in GR in order to compute an upper bound to the uncertainty in mod-
eling the geodetic precession, and in order to show that the result is negligible with
respect to the uncertainty in the measurement of the Lense-Thirring effect (see [4],
Supplementary Discussion). Such a result is important in order to extract the Lense-
Thirring effect from LAGEOS data, and it is achieved thanks to the precision of the
measurement of geodetic precession by means of lunar laser ranging (LLR) data [30].

In Sect. 8 we will show that the uncertainty in modeling the geodetic precession
can be neglected also in presence of spacetime torsion. In particular, the upper bounds
on the torsion parameters ti found in [16] and recalled in the subsequent formula (7.4)
will be useful in order to obtain such a conclusion. This is important in order to extract
the Lense-Thirring effect from LAGEOS data also in the presence of torsion, and that
will allow us to constrain suitable linear combinations of the parameters wi separately.
Hence, in the following we briefly need to report the results obtained in [16].

The geodetic precession of orbital elements of the satellite in the gravitational field
of the Earth and the Sun (both supposed to be nonrotating) is computed, in a Sun-
centered reference system. It is shown that, to the required order of accuracy, the
corresponding metric is described by a further parameter I = 2(β − γ ), where β

is the usual PPN parameter, and the parametrization of the torsion tensor involves a
further parameter t3 (see [16] for the details).

The secular contributions to the precessions of the node and of the perigee due to
torsion found in [16] are the following:
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(δ�Sun)sec = 1

4

Mν0

ρ

(

C1 − C2
ν0

n
cos i

)

t,

(δω̃Sun)sec = 1

4

Mν0

ρ

{

C1 + C2
ν0

n

[

4 − cos i − 5 sin2 i sin2(ω̃ − �)
]}

t, (7.1)

where

C1 ≡ 1 − H
2

+ 2F + 3t2, C2 ≡ 1 + H
2

+ H2

2
− F − I + t2 + 2t3. (7.2)

Here M is the mass of the Sun, ν0 is the revolution angular velocity of the Earth around
the Sun, and ρ is the distance of the Earth from the Sun.

Differently from the Lense-Thirring effect, the precessions (7.1) depend on the
torsion parameters t2 and t3, and are independent of t4; the parameter t1 is identified
using the Newtonian limit (4.5).

We recall that t3 and t4 enter the parametrization of torsion at the higher order of
accuracy required in the computation of precessions (7.1).

The perturbations (7.1) have to be superimposed to the ones computed in Sect. 6.
The first term on the right hand sides of the two formulas in (7.1) can be interpreted

as the geodetic precession effect, when torsion is present [16]: accordingly we set

(δ�geo)sec = (δω̃geo)sec = C1

4

Mν0

ρ
t. (7.3)

In the PPN formalism we have

C1 = 2 + 4γ + 3t2, C2 = t2 + 2(1 − β + t3).

Using LLR data and Mercury radar ranging data respectively, the following upper
bounds are given in [16, Sect. 13]:

|t2| < 0.0128, |1 − β + t3| < 0.0286. (7.4)

Since for LAGEOS satellites ν0
n ∼ 4.2 × 10−4, we have

(δ�Sun)sec � (δ�geo)sec, (δω̃Sun)sec � (δω̃geo)sec.

Taking into account the expression of C1, we have

(δ�geo)sec = (δω̃geo)sec = Mν0

2ρ

(

1 + 2γ + 3

2
t2

)

t. (7.5)

This formula yields the rate of geodetic precession around an axis which is normal
to the ecliptic plane. The projection of this precession rate on the axis of rotation of
Earth is obtained by multiplying (δ�geo)sec by cos ε, where ε = 23.5 degrees is the
angle between the Earth’s equatorial plane and the ecliptic plane [31]: this gives the
values of the geodetic precession in a Earth-centered reference system.
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8 Constraining torsion parameters with LAGEOS

In this section we describe how the LAGEOS data can be used to extract a limit on the
torsion parameters. We will assume in the following that all metric parameters take
the same form as in the PPN formalism, according to (10.2). Recent limits on vari-
ous components of the torsion tensor, obtained in a different torsion model based on
the fact that background torsion may violate effective local Lorentz invariance, have
been obtained in [32]. See also [33], where constraints on possible new spin-coupled
interactions using a torsion pendulum are described.

8.1 Constraints from nodes measurement

Here we discuss how frame dragging torsion parameters can be constrained by the
measurement of a suitable linear combination of the nodal rates of the two LAGEOS
satellites.

Equation (6.2) can be rewritten as

(δ�)sec = 2J

a3(1 − e2)3/2

(

− G
2

− w2 − w4

4

)

t = (δ�)GR
sec b�, (8.1)

where we have defined, similarly to [9] and [16], a multiplicative torsion “bias” relative
to the GR prediction as

b� = (δ�)sec

(δ�)GR
sec

= −G
2

− w2 − w4

4
= 1

2

(

1 + γ + α1

4

)

− w2 − w4

4
, (8.2)

(δ�)GR
sec = 2J

a3(1−e2)3/2 t being the Lense-Thirring precession in GR. We recall that the
values of such precessions are 31 and 31.5 mas/yr for LAGEOS and LAGEOS II,
respectively, where mas/yr denotes milli-arcseconds per year.

Let us now consider the contribution of the geodetic precession to the nodal rate. We
write the secular contribution to the nodal rate, in a Earth-centered reference system,
in the form

(δ�geo)sec cos ε = (δ�geo)GR
sec cos ε bgeo

� , (8.3)

where bgeo
� depends on t2. Precisely, taking into account that (δ�geo)GR

sec = 3Mν0
2ρ

t and
using (7.5), we have

bgeo
� = 1

3
(1 + 2γ ) + t2

2
. (8.4)

Moreover, the following numerical constraints are set on PPN parameters γ and α1
by Cassini tracking [34] and LLR data [3], respectively:

γ − 1 = (2.1 ± 2.3) × 10−5, |α1| < 10−4. (8.5)
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From (8.5) it follows that the term 1
3 (1 + 2γ ) differs from 1 by a few part in 10−5.

Therefore, using (7.4), (8.4) and (8.5) we get

∣

∣bgeo
� − 1

∣

∣ �
∣

∣

∣

∣

t2
2

∣

∣

∣

∣

< 0.0064. (8.6)

The measurement of the Lense-Thirring effect in [4,35] is based on the following
linear combination of the total nodal rates of the two LAGEOS satellites:

δ�tot
I + κδ�tot

II , (8.7)

where the subscripts I and II denote LAGEOS and LAGEOS II, respectively. Here the
total nodal rate δ�tot of a LAGEOS satellite denotes the nodal rate due to all kinds
of perturbations, both gravitational and nongravitational. The coefficient κ = 0.545
is chosen to make the linear combination (8.7) independent of any contribution of the
Earth’s quadrupole moment J2, which describes the Earth’s oblateness.

In [4] the residual (observed minus calculated) nodal rates �(δ�I),�(δ�II) of
the LAGEOS satellites are obtained analyzing nearly eleven years of laser rang-
ing data. The residuals are then combined according to the linear combination
�(δ�I) + κ�(δ�II), analogue to (8.7). The Lense-Thirring effect is set equal to zero
in the calculated nodal rates. The linear combination of the residuals, after removal of
the main periodic signals, is fitted with a secular trend which corresponds to 99% of
the theoretical Lense-Thirring prediction of GR (see [4,35] for the details):

(δ�I)
GR
sec + κ(δ�II)

GR
sec = 48.2 mas/yr.

The total uncertainty of the measurement is ±5% of the value predicted by GR
[4,35,36]. This uncertainty is a total error budget that includes all estimated sys-
tematic errors due to gravitational and non-gravitational perturbations, and stochastic
errors. Such a result is quoted as a 1 − σ level estimate in [37,38], though an explicit
indication of this fact is missing in [4]. Eventually, the authors allow for a total ±10%
uncertainty to include underestimated and unmodelled error sources [4]. In the fol-
lowing we assume a value of ±10% for the uncertainty of the measurement.

Using the upper bound (8.6), the uncertainty in modeling geodetic precession in
the presence of torsion is

∣

∣bgeo
� − 1

∣

∣

[

(

δ�
geo
I

)GR
sec + κ

(

δ�
geo
II

)GR
sec

]

cos ε

≤ 0.0064
27.2

48.2
×

[

(δ�I)
GR
sec + κ(δ�II)

GR
sec

]

, (8.8)

where
[

(δ�
geo
I )GR

sec + κ(δ�
geo
II )GR

sec

]

cos ε = 27.2 mas/yr is the contribution from geo-
detic precession predicted by GR for LAGEOS satellites. Compared to the ±10%
uncertainty in the measurement of the Lense-Thirring effect, the uncertainty in mod-
eling geodetic precession can be neglected (as in [4,35]) even in the presence of
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spacetime torsion. This is a consequence of the torsion limits set with the Moon and
Mercury in [16].

Then we can apply the results of [4,35] to our computations with torsion, and we
obtain

∣

∣

∣(δ�I)sec + κ(δ�II)sec − 0.99
[

(δ�I)
GR
sec + κ(δ�II)

GR
sec

] ∣

∣

∣

< 0.10
[

(δ�I)
GR
sec + κ(δ�II)

GR
sec

]

,

where (δ�I)sec and (δ�II)sec are given by (8.1). Since the torsion bias b� does not
depend on the orbital elements of the satellite, we have

(δ�I)sec + κ(δ�II)sec

(δ�I)GR
sec + κ(δ�II)GR

sec
= b�.

Hence, using (8.2), we can constrain a linear combination of the frame-dragging tor-
sion parameters w2, w4, setting the limit

|b� − 0.99| =
∣

∣

∣

1

2

(

γ − 1 + α1

4

)

− w2 − w4

4
+ 0.01

∣

∣

∣ < 0.10,

which is shown graphically in Fig. 1, together with the other constraints on γ and α1
[3].

Taking into account the numerical constraints (8.5) the limit on torsion parameters
from LAGEOS becomes

∣

∣

∣ − w2 − w4

2
+ 0.02

∣

∣

∣ < 0.20

which implies

− 0.36 < w2 − w4 < 0.44. (8.9)

The constraint (8.9) on the torsion parameters depends on the quantitative assessment
of the uncertainty of the measurement of the Lense-Thirring effect. However, the value
5–10% of the uncertainty reported in [4] has been criticized by several authors. For
example Iorio argues in [37] that the uncertainty might be 15–45%. The previous
computations show that the upper bound on the quantity

∣

∣

∣ − w2 − w4

4
+ 0.01

∣

∣

∣

is given by the uncertainty of the measurement, so that one can find the constraint on
the linear combination of the torsion parameters w2, w4 corresponding to a different
value of the uncertainty. For instance, if the value of the uncertainty of the measurement
is ±50%, the constraint on torsion parameters becomes

−1.96 < w2 − w4 < 2.04.
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Fig. 1 constraints on PPN parameters (γ, α1) and on frame-dragging torsion parameters (w2, w4) from
solar system tests. The grey area is the region excluded by lunar laser ranging and Cassini tracking. The
LAGEOS nodes measurement of the Lense-Thirring effect [4,35] excludes values of (w2 − w4)/2 outside
the hatched region. General Relativity corresponds to γ = 1, α1 = 0 and all torsion parameters = 0 (black
dot)

One of the goals of the LAGEOS, LAGEOS II, LARES2 three-satellite experiment,
together with improved Earth’s gravity field models of GRACE (Gravity Recovery
And Climate Experiment) is to improve the experimental accuracy on the orbital
Lense-Thirring effect to “a few percent” [35].

We observe that, using (8.8) the uncertainty in modeling geodetic precession in
presence of torsion amounts to about 0.4% of the Lense-Thirring effect, which is still
a small contribution to a total root-square-sum error of a few percent. Note that an
improved determination of the geodetic precession has been recently achieved by GPB
[10] which, unlike LAGEOS, is designed to separate the frame-dragging and geodetic
precessions by measuring two different, orthogonal precessions of its gyroscopes.

In the case of GPB, the torsion bias for the precession of a gyroscope is [9]

−G
2

− w1 + w2 − w3 − 2w4 + w5

2
.

2 LAser RElativity Satellite, a geodynamics mission of the Italian Space Agency (ASI) to be launched.
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This formula (the analogue of the right hand side of equation (8.2)) involves a linear
combination of all frame-dragging torsion parameters. Such a linear combination can
be constrained from GPB data. Since LAGEOS and GPB are sensitive to different
linear combinations, together they can put more stringent torsion limits.

After taking into account the contribution of the geodetic precession, the com-
bined constraints from gyroscope and orbital Lense-Thirring experiments are effective
probes to search for the experimental signatures of spacetime torsion. In this sense,
LAGEOS and GPB are to be considered complementary frame-dragging and, at the
same time, torsion experiments, with the notable difference that GPB measures also
the geodetic precession.

8.2 Constraints from nodes and perigee measurement

In this section we discuss how frame dragging torsion parameters can be constrained by
the measurement of a linear combination of the nodal rates of LAGEOS and LAGEOS
II and the perigee rate of LAGEOS II.

Similarly to the previous section, we define a multiplicative torsion “bias” relative
to the GR prediction also for the rate of the argument of the perigee (6.4):

bω = (δω)sec

(δω)GR
sec

= − G
6 cos i

[

3 + μ1 + 2μ2 − 6(1 + μ3) sin2 i

2

]

,

(δω)GR
sec = − 6J cos i

a3(1−e2)3/2 t being the Lense-Thirring precession in GR: we recall that the
value of this precession is −57mas/yr for LAGEOS II. In the following, the torsion
bias bω is referred to LAGEOS II.

Using the values of μ1, μ2 and μ3 given in Sect. 6 we find

bω = −G
2

+ 4w1 − w2 − 2w3 + w4 + 2w5

12
. (8.10)

The measurement of the Lense-Thirring effect in [39] is based on the following linear
combination of the residuals of the nodes of LAGEOS and LAGEOS II and of the
perigee of LAGEOS II:

�(δ�I) + c1�(δ�II) + c2�(δωII), (8.11)

where the coefficients c1 = 0.295 and c2 = −0.35 are chosen to make the linear
combination (8.11) independent of the first two even zonal harmonic coefficients J2
and J4, and of their uncertainties.

In [39] the residuals are obtained analyzing 4 years of laser ranging data, and then
combined according to the linear combination (8.11). The Lense-Thirring effect is
set equal to zero in the calculated rates of the nodes and of the perigee. The linear
combination of the residuals, after removal of the main periodic signals and of small
observed inclination residuals, is fitted with a secular trend which corresponds to 1.1
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times the theoretical Lense-Thirring prediction of GR (see [39] for the details):

(δ�I)
GR
sec + c1(δ�II)

GR
sec + c2(δωII)

GR
sec = 60.2 mas/yr.

The total uncertainty of the measurement found in [39] is ±20% of the value predicted
by GR. This uncertainty is a total error budget that includes all the estimated system-
atic errors due to gravitational and non-gravitational perturbations. Such a result is
quoted as a 1 − σ level estimate in [37], though an explicit indication of this fact is
missing in [39].

The contribution to the uncertainty of the measurement due to nongravitational per-
turbations, mainly thermal perturbative effects, on the perigee of LAGEOS II, amounts
to 13% of the value predicted by GR. In [40] such an estimate is confirmed, however
the author, when considering more pessimistic assumptions on some thermal effects,
estimates that the contribution of nongravitational perturbations to the total uncertainty
does not exceed the 28% of the GR value. Here we will follow this more conservative
estimate. Inserting this value in the estimate of the total uncertainty computed in [39]
yields a total root-square-sum error of 32% of the GR value.

For reasons similar to the ones discussed in the previous section, we are allowed
to neglect the uncertainty in modeling the geodetic precession in presence of torsion.
Then we can apply the results of [39] to our computations with torsion, and we obtain

∣

∣

∣(δ�I)sec + c1(δ�II)sec + c2(δωII)sec − 1.1
[

(δ�I)
GR
sec + c1(δ�II)

GR
sec + c2(δωII)

GR
sec

] ∣

∣

∣

< 0.32
[

(δ�I)
GR
sec + c1(δ�II)

GR
sec + c2(δωII)

GR
sec

]

.

A direct computation gives

|(1 − K )b� + K bω − 1.1| < 0.32, (8.12)

where

K = c2(δωII)
GR
sec

(δ�I)GR
sec + c1(δ�II)GR

sec + c2(δωII)GR
sec

= 0.33.

Inserting in (8.12) the expressions of b� and bω given in (8.2), (8.10) and taking
into account that G � −2 by formula (8.5), we obtain

−0.22 < −w2 − w4

4
+ K

(

2w1 + w2 − w3 − w4 + w5

6

)

< 0.42.

Using the value of K we finally deduce

− 0.22 < 0.11w1 − 0.20w2 − 0.06w3 + 0.20w4 + 0.06w5 < 0.42, (8.13)

which is shown graphically in Fig. 2, together with the other constraints on γ and α1
[3]. The constraint (8.13) on the linear combination of the frame-dragging parameters
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Fig. 2 constraints on PPN parameters (γ, α1) and on frame-dragging torsion parameters
(w1, w2, w3, w4, w5) from solar system tests. The grey area is the region excluded by lunar laser ranging
and Cassini tracking. The LAGEOS nodes and perigee measurement of the Lense-Thirring effect [39,40]
excludes values of 0.11w1 − 0.20w2 − 0.06w3 + 0.20w4 + 0.06w5 outside the hatched region. General
Relativity corresponds to γ = 1, α1 = 0 and all torsion parameters = 0 (black dot)

is rather weak, due to the uncertainty on the nongravitational perturbations. Notice
that the coefficients in front of w3 and w5 are of an order of magnitude smaller than
the coefficients of the other parameters, so that the constraint on w3 and w5 is even
looser.

Thermal thrusts (TTs) are the main source of non-gravitational perturbations [40].
One of the main drivers of LAGEOS TTs is the thermal relaxation time τCCR of its fused
silica cube corner retroreflectors [41], which has been characterized in laboratory-sim-
ulated space conditions at the INFN-LNF Satellite/lunar laser ranging Characteriza-
tion Facility (SCF) [42–44]. The measurements of LAGEOS τCCR in a variety of
thermal conditions provide the basis for possibly reducing the uncertainty on the ther-
mal perturbative effects. As a consequence, the constraint (8.13) could be improved.

The constraint (8.13) on the torsion parameters depends on the quantitative assess-
ment of the uncertainty of the measurement of the Lense-Thirring effect. Again, the
value ±20% of the uncertainty reported in [39] has been criticized by various authors.
For example Ries, Eanes and Tapley argue in [45] that the uncertainty is at best in
the 50–100% range. The uncertainty of the measurement yields the upper bound on
the right-hand side of the estimate (8.12). Hence, one can find the constraint on the
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linear combination of the torsion parameters wi corresponding to a different value of
the uncertainty as it has been discussed in Sect. 8.1.

We recall that in [9] an upper bound on the combination |w1 + w2 − w3 − 2w4 + w5|
is given. This constrains the torsion parameters within two parallel hyperplanes in a
five-dimensional space. If we couple this bound with our two estimates (8.9) and (8.13),
we obtain that w1, . . . , w5 are constrained to lye in a five-dimensional set, which is
unbounded only along two directions. Hence, coupling GPB with SLR measurements
significantly reduces the degrees of freedom on the frame-dragging parameters.

We conclude this section by observing that the recently approved JUNO mission
to Jupiter [46] will make it possible, in principle, to attempt a measurement of the
Lense-Thirring effect through the JUNO’s node, which would be displaced by about
570 m over the mission duration of one year [47]. Hence, such a mission yields an
opportunity for a possible improvement of the costraints on torsion parameters.

9 Conclusions

We have applied the framework recently developed in [9] for GR with torsion, to
the computation of the slow orbital motion of a satellite in the field generated by the
Earth. Starting from the autoparallel trajectories, we computed the corrections to the
classical orbital Lense-Thirring effect in the presence of torsion. By using perturbation
theory, we have found the explicit dependence of the secular variations of the longi-
tudes of the node and of the perigee on the frame-dragging torsion parameters. The
LAGEOS nodes measurements [4,35] and the LAGEOS nodes and perigee measure-
ments [39,40] of the Lense-Thirring effect can be used to place constraints on torsion
parameters, which are different and complementary to those set by GPB.
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work. We thank I. Ciufolini for suggesting this analysis after the publication of the paper by MTGC [9],
and B. Bertotti and A. Riotto for useful advices.

10 Appendix

Under spherical axisymmetry assumptions, the metric tensor gμν can be parametrized
to first order as follows [9]:

ds2 = −
[

1 + Hm

r

]

dt2 +
[

1 + F m

r

]

dr2 + r2(dθ2 + sin2 θ dφ2)

+2G J

r
sin2 θ dtdφ, (10.1)

where H,F ,G are three dimensionless parameters that can be immediately related to
the Parametrized Post Newtonian (PPN) parameters:

H = −2, F = 2γ, G = −
(

1 + γ + α1

4

)

. (10.2)
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Here we follow the notation of the paper [9], instead of the PPN notation. This is
useful in Sect. 7.

The nonvanishing components of the torsion tensor are:

S t
tr = t1

m

2r2 ,

S θ
rθ = S φ

rφ = t2
m

2r2 ,

S t
rφ = w1

J

2r2 sin2 θ,

S t
θφ = w2

J

2r
sin θ cos θ,

S r
tφ = w3

J

2r2 sin2 θ,

S θ
tφ = w4

J

2r3 sin θ cos θ,

S φ
tr = w5

J

2r4 ,

S φ
tθ = −w4

J

2r3

cos θ

sin θ
.

(10.3)

The expression of the nonvanishing components of the connection approximated
to first order in εm = m/r, εJ = J/(mr) and εmεJ = J/r2 is the following [9]:

�t
tr = 1

2r
(2t1 − H) εm,

�t
r t = − H

2r
εm,

�t
rφ = 1

2
(3G + (w1 − w3 − w5)) sin2 θ εmεJ ,

�t
φr = 1

2
(3G − (w1 + w3 + w5)) sin2 θ εmεJ ,

�t
θφ = 1

2
w2r sin θ cos θ εmεJ ,

�r
tt = 1

2r
(2t1 − H) εm,

�r
rr = − F

2r
εm,

�r
θθ = −r + (t2 + F)r εm,

�r
φφ = −r sin2 θ + 1

r
(F + t2) sin2 θ εm,

�r
tφ = 1

2
(G − (w1 − w3 + w5)) sin2 θ εmεJ ,

�r
φt = 1

2
(G − (w1 + w3 + w5)) sin2 θ εmεJ ,
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�θ
tφ = − 1

2r
(2G + (w2 − 2w4)) sin θ cos θ εmεJ ,

�θ
φt = − 1

2r
(2G + w2) sin θ cos θ εmεJ ,

�θ
rθ = �

φ
rφ = 1

r
,

�θ
θr = �

φ
φr = 1

r
− 1

r
t2 εm,

�θ
φφ = − sin θ cos θ,

�
φ
tr = − 1

2r2 (G − (w1 − w3 + w5)) εmεJ ,

�
φ
r t = − 1

2r2 (G − (w1 − w3 − w5)) εmεJ ,

�
φ
tθ = 1

2r
(2G + (w2 − 2w4))

cos θ

sin θ
εmεJ ,

�
φ
θ t = 1

2r
(2G + w2)

cos θ

sin θ
εmεJ ,

�
φ
θφ = �

φ
φθ = cos θ

sin θ
.
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